No zoom

This image shows a globular cluster known as NGC 1651. Like the object in another recent Picture of the Week, it is located about 162 000 light-years away in the largest and brightest of the Milky Way’s satellite galaxies, the Large Magellanic Cloud (LMC). A notable feature of this image is that the globular cluster almost fills the entire image, even though globular clusters are only about 10 to 300 light-years in diameter (NGC 1651 has a diameter of roughly 120 light-years). In contrast, there are numerous Hubble Pictures of the Week that feature entire galaxies — which can be tens or hundreds of millions of light-years in diameter — that also more or less fill the whole image

A common misconception is that Hubble and other large telescopes manage to observe wildly differently sized celestial objects by zooming in on them, as one would with a specialised camera here on Earth. However, whilst small telescopes might have the option to zoom in and out to a certain extent, large telescopes do not. Each telescope’s instrument has a fixed ‘field of view’ (the size of the region of sky that it can observe in a single observation). For example, the ultraviolet/visible light channel of Hubble’s Wide Field Camera 3 (WFC3), the channel and instrument that were used to collect the data used in this image, has a field of view roughly one twelfth the diameter of the Moon as seen from Earth. Whenever WFC3 makes an observation, that is the size of the region of sky that it can observe.

The reason that Hubble can observe objects of such wildly different sizes is two-fold. Firstly, the distance to an object will determine how big it appears to be from Earth, so entire galaxies that are relatively far away might take up the same amount of space in the sky as a globular cluster like NGC 1651 that is relatively close by. In fact, there's a distant spiral galaxy lurking in this image, directly left of the cluster — though undoubtedly much larger than this star cluster, it appears small enough here to blend in with foreground stars! Secondly, multiple images spanning different parts of the sky can be mosaiced together to create single images of objects that are too big for Hubble’s field of view. This is a very complex task and is not typically done for Pictures of the Week, but it has been done for some of Hubble’s most iconic images.

[Image Description: A spherical collection of stars, which fills the whole view. The stars merge into a bright, bluish core in the centre, and form a sparse band around that out to the edges of the image. A few stars lie in front of the cluster, with visible diffraction spikes. The background is dark black.]

Links

Credit:

ESA/Hubble & NASA, L. Girardi, F. Niederhofer

About the Image

Id:potw2413a
Type:Observation
Release date:25 March 2024, 06:00
Size:3736 x 3839 px

About the Object

Name:NGC 1651
Distance:162000 light years
Constellation:Mensa
Category:Star Clusters

Image Formats

r.titleLarge JPEG
6.5 MB
r.titleScreensize JPEG
531.7 KB

Zoomable


Wallpapers

r.title1024x768
482.1 KB
r.title1280x1024
740.0 KB
r.title1600x1200
1.0 MB
r.title1920x1200
1.2 MB
r.title2048x1536
1.6 MB

Coordinates

Position (RA):4 37 32.42
Position (Dec):-70° 35' 4.94"
Field of view:2.47 x 2.53 arcminutes
Orientation:North is 0.0° right of vertical


Colours & filters

BandWavelengthTelescope
Optical
g
475 nm Hubble Space Telescope
WFC3
Optical
g
475 nm Hubble Space Telescope
WFC3
Optical
I
814 nm Hubble Space Telescope
WFC3
Optical
I
814 nm Hubble Space Telescope
WFC3

Also see our


Privacy policy Accelerated by CDN77