Picture of the Week 2014

Also see our pictures of the week on eso.org.
10 March 2014

An interstellar butterfly

They say the flap of a butterfly's wings can set off a tornado on the other side of the world. But what happens when a butterfly flaps its wings in the depths of space?

This cosmic butterfly is a nebula known as AFGL 4104, or Roberts 22. Caused by a star that is nearing the end of its life and has shrugged off its outer layers, the nebula emerges as a cosmic chrysalis to produce this striking sight. Studies of the lobes of Roberts 22 have shown an amazingly complex structure, with countless intersecting loops and filaments.

A butterfly's life span is counted in weeks; although on a much longer timescale, this stage of life for Roberts 22 is also transient. It is currently a preplanetary nebula, a short-lived phase that begins once a dying star has pushed much of the material in its outer layers into space, and ends once this stellar remnant becomes hot enough to ionise the surrounding gas clouds and make them glow. About 400 years ago, the star at the centre of Roberts 22 shed its outer shells, which raced outwards to form this butterfly. The central star will soon be hot enough to ionise the surrounding gas, and it will evolve into a fully fledged planetary nebula.

Information about the nature, age, and structure of Roberts 22 was presented in a paper using Hubble data back in 1999, published in The Astronomical Journal.

3 March 2014

Hubble views new supernova in Messier 82

Spiral galaxy Messier 82 has long been known for its remarkable starburst activity, caused by interactions with its near neighbour Messier 81, and has been the subject of intense study for many years. On 21 January 2014, astronomers at the University of London Observatory in London, UK, pointed their telescope at the galaxy and spied something peculiar… an intensely bright spot seemed to have suddenly appeared within the galaxy [1].

This bright spot is actually a new supernova known as SN 2014J — the closest supernova to Earth in recent decades! Since its discovery, SN 2014J has been confirmed as a type Ia supernova, making it the closest of its type to Earth in over 40 years (since SN 1972E) [2]. This new NASA/ESA Hubble Space Telescope image is set against a previous mosaic of Messier 82 from 2006 (heic0604a), and shows the supernova as an intensely bright spot towards the bottom right of the frame.

Type Ia supernovae are even more exciting for astronomers, as they have particular properties that we can use to probe the distant Universe. They are used as standard candles to measure distances and help us understand the scale of the cosmos. Catching such a supernova so soon after its explosion is very unusual; this early discovery will enable astronomers to explore its evolution in great detail, and to potentially infer the properties of its progenitor star.

Messier 82 is several times more luminous than our Milky Way. Because it is only 12 million light-years away, it is one of the brighter galaxies in the northern sky. It can be found in the constellation of Ursa Major (The Great Bear). The supernova is currently visible through a modest amateur telescope, so why not see if you can spot it from your back garden?

The image shown here was taken on 31 January 2014 with Hubble’s Wide Field Camera 3. This image is inset into a photo mosaic of the entire galaxy taken in 2006 with Hubble’s Advanced Camera for Surveys.


[1] The supernova was discovered at 19:20 GMT by a team of students — Ben Cooke, Tom Wright, Matthew Wilde and Guy Pollack — assisted by Dr Steve Fossey. The supernova is visible in pre-discovery images of the galaxy.

[2] Supernova SN 1987A, discovered in 1987, was closer to Earth than SN 2014J, but it was a type II supernova rather than a type Ia.


24 February 2014

Cloaked in red

This stunning new Hubble image shows a small part of the Large Magellanic Cloud, one of the closest galaxies to our own. This collection of small baby stars, most weighing less than the Sun, form a young stellar cluster known as LH63. This cluster is still half-embedded in the cloud from which it was born, in a bright star-forming region known as the emission nebula LHA 120-N 51, or N51. This is just one of the hundreds of star-forming regions filled with young stars spread throughout the Large Magellanic Cloud.

The burning red intensity of the nebulae at the bottom of the picture illuminates wisps of gas and dark dust, each spanning many light-years. Moving up and across, bright stars become visible as sparse specks of light, giving the impression of pin-pricks in a cosmic cloak.

This patch of sky was the subject of observation by Hubble's WFPC2 camera. Looking for and at low-mass stars can help us to understand how stars behave when they are in the early stages of formation, and can give us an idea of how the Sun might have looked billions of years ago.

A version of this image was submitted to the Hubble's Hidden Treasures image processing competition by contestant Luca Limatola.

17 February 2014

Starbursts versus Monsters

The dominating figure in the middle of this new Hubble image is a galaxy known as MCG-03-04-014. It belongs to a class of galaxies called luminous infrared galaxies — galaxies that are incredibly bright in the infrared part of the spectrum.

This galaxy's status as a luminous infrared galaxy makes it part of an interesting astronomical question: starbursts versus monsters, a debate over how these galaxies are powered. Why are they so luminous in the infrared? Is it due to a recent burst of star formation, or a fiercely powerful "monster" black hole lurking at their core — or a mix of the two? The answer is still unclear.

This new image of MCG-03-04-014 shows bright sparks of star formation dotted throughout the galaxy, with murky dust lanes obscuring a bright central bulge. The galaxy seems to show evidence of disruption; at the top of the galaxy you can see bright wisps streaking into space, but the bottom is smooth and rounded. This asymmetrical appearance implies that another object is tugging at the galaxy and distorting its symmetry.

A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Judy Schmidt.


10 February 2014

It came from outer space

Named after its discoverer, the French-Armenian astronomer Agop Terzan, this is the globular cluster Terzan 7 — a densely packed ball of stars bound together by gravity. It lies just over 75 000 light-years away from us on the other side of our galaxy, the Milky Way. It is a peculiar cluster, quite unlike others we observe, making it an intriguing object of study for astronomers.

Evidence shows that Terzan 7 used to belong to a small galaxy called the Sagittarius Dwarf Galaxy, a mini-galaxy discovered in 1994. This galaxy is currently colliding with, and being absorbed by, the Milky Way, which is a monster in size when compared to this tiny one. It seems that this cluster has already been kidnapped from its former home and now is part of our own galaxy.

Astronomers recently discovered that all the stars in Terzan 7 were born at around the same time, and are about eight billion years old. This is unusually young for such a cluster. The shared birthday is another uncommon property; a large number of globular clusters, both in the Milky Way and in other galaxies, seem to have at least two clearly differentiated generations of stars that were born at different times.

Some explanations suggest that there is something different about clusters that form within dwarf galaxies, giving them a different composition. Others suggest that clusters like Terzan 7 only have enough material to form one batch of stars, or that perhaps its youthfulness has prevented it from yet forming another generation.

A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Gilles Chapdelaine.

3 February 2014

A nursery for unruly young stars

This striking new image, captured by the NASA/ESA Hubble Space Telescope, reveals a star in the process of forming within the Chamaeleon cloud. This young star is throwing off narrow streams of gas from its poles — creating this ethereal object known as HH 909A. These speedy outflows collide with the slower surrounding gas, lighting up the region.

When new stars form, they gather material hungrily from the space around them. A young star will continue to feed its huge appetite until it becomes massive enough to trigger nuclear fusion reactions in its core, which light the star up brightly.

Before this happens, new stars undergo a phase during which they violently throw bursts of material out into space. This material is ejected as narrow jets that streak away into space at breakneck speeds of hundreds of kilometres per second, colliding with nearby gas and dust and lighting up the region. The resulting narrow, patchy regions of faintly glowing nebulosity are known as Herbig-Haro objects. They are very short-lived structures, and can be seen to visibly change and evolve over a matter of years (heic1113) — just the blink of an eye on astronomical timescales.

These structures are very common within star-forming regions like the Orion Nebula, or the Chameleon I molecular cloud — home to the subject of this image. The Chameleon cloud is located in the southern constellation of Chameleon, just over 500 light-years from Earth. Astronomers have found numerous Herbig-Haro objects embedded in this stellar nursery, most of them emanating from stars with masses similar to that of the Sun. A few are thought to be tied to less massive objects such as brown dwarfs, which are "failed" stars that did not hit the critical mass to spark reactions in their centres.

A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Judy Schmidt.

27 January 2014

Hubble’s modern art

A piece of art? A time-lapse photo? A flickering light show?

At first glance, this image looks nothing like the images that we are used to seeing from Hubble.

The distinctive splashes of colour must surely be a piece of modern art, or an example of the photographic technique of "light painting". Or, could they be the trademark tracks of electrically charged particles in a bubble chamber? On a space theme, how about a time-lapse of the paths of orbiting satellites?

The answer? None of the above. In fact, this is a genuine frame that Hubble relayed back from an observing session.

Hubble uses a Fine Guidance System (FGS) in order to maintain stability whilst performing observations. A set of gyroscopes measures the attitude of the telescope, which is then corrected by a set of reaction wheels. In order to compensate for gyroscopic drift, the FGS locks onto a fixed point in space, which is referred to as a guide star.

It is suspected that in this case, Hubble had locked onto a bad guide star, potentially a double star or binary. This caused an error in the tracking system, resulting in this remarkable picture of brightly coloured stellar streaks. The prominent red streaks are from stars in the globular cluster NGC 288. It seems that even when Hubble makes a mistake, it can still kick-start our imagination.

A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Judy Schmidt.

20 January 2014

Seeing double

In this new Hubble image two objects are clearly visible, shining brightly. When they were first discovered in 1979, they were thought to be separate objects — however, astronomers soon realised that these twins are a little too identical! They are close together, lie at the same distance from us, and have surprisingly similar properties. The reason they are so similar is not some bizarre coincidence; they are in fact the same object.

These cosmic doppelgangers make up a double quasar known as QSO 0957+561, also known as the "Twin Quasar", which lies just under 14 billion light-years from Earth. Quasars are the intensely powerful centres of distant galaxies. So, why are we seeing this quasar twice?

Some 4 billion light-years from Earth — and directly in our line of sight — is the huge galaxy YGKOW G1. This galaxy was the first ever observed gravitational lens, an object with a mass so great that it can bend the light from objects lying behind it. This phenomenon not only allows us to see objects that would otherwise be too remote, in cases like this it also allows us to see them twice over.

Along with the cluster of galaxies in which it resides, YGKOW G1 exerts an enormous gravitational force. This doesn't just affect the galaxy's shape, the stars that it forms, and the objects around it — it affects the very space it sits in, warping and bending the environment and producing bizarre effects, such as this quasar double image.

This observation of gravitational lensing, the first of its kind, meant more than just the discovery of an impressive optical illusion allowing telescopes like Hubble to effectively see behind an intervening galaxy. It was evidence for Einstein's theory of general relativity. This theory had identified gravitational lensing as one of its only observable effects, but until this observation no such lensing had been observed since the idea was first mooted in 1936.


13 January 2014

Hubble close-up on the Coma Cluster

In this new image Hubble peeks into the Coma Cluster, a massive gathering of galaxies located towards the constellation of Coma Berenices. This large cluster is around 350 million light-years away from us and contains over 1000 identified galaxies, the majority of which are elliptical.

The bright, saucer-shaped objects surrounded by misty halos in this image are galaxies, each of them host to many millions of stars. The background of the image is full of distant galaxies, many of them with spiral shapes, that are located much further away and do not belong to the cluster.

Visible in this image are three galaxies within the Coma Cluster: IC 4041 (far left), IC 4042 (centre), and GP 236 (right).

A version of this image was entered into the Hidden Treasures image processing competition by contestant Nick Rose.


6 January 2014

A star set to explode

Floating at the centre of this new Hubble image is a lidless purple eye, staring back at us through space. This ethereal object, known officially as [SBW2007] 1 but sometimes nicknamed SBW1, is a nebula with a giant star at its centre. The star was originally twenty times more massive than our Sun, and is now encased in a swirling ring of purple gas, the remains of the distant era when it cast off its outer layers via violent pulsations and winds.

But the star is not just any star; scientists say that it is destined to go supernova! 26 years ago, another star with striking similarities went supernova — SN 1987A. Early Hubble images of SN 1987A show eerie similarities to SBW1. Both stars had identical rings of the same size and age, which were travelling at similar speeds; both were located in similar HII regions; and they had the same brightness. In this way SBW1 is a snapshot of SN1987a's appearance before it exploded, and unsurprisingly, astronomers love studying them together.

At a distance of more than 20 000 light-years it will be safe to watch when the supernova goes off. If we are very lucky it may happen in our own lifetimes...

Versions of this image were entered into the Hubble's Hidden Treasures image processing competition by contestants Nick Rose and Steve Byrne.


  • Paper on SBW1 by Nathan Smith et al.

« Previous 1 | 2  
Showing 21 to 30 of 30